Рефераты. Автоматика тепловых процессов

Таблица 4. Дополнительные буквенные обозначения, отражающие функциональные признаки приборов по ГОСТ 21.404-85

Наименование

Обозначение

Чувствительный элемент (первичное преобразование)

Е

Дистанционная передача (промежуточное преобразование)

Т

Станция управления

К

Преобразование; вычислительные функции

Y

Таблица 5. Дополнительные обозначения, отражающие функциональные признаки преобразователей сигналов и вычислительных устройств по ГОСТ 21.404-85

Наименование

Обозначение

Род сигнала:

электрический

пневматический

гидравлический

Е

Р

G

Виды сигнала:

аналоговый

дискретный

А

D

Пример построения условного обозначения прибора для измерения, регистрации и автоматического регулирования перепада давления приведен на рис. 2.

Рис. 2. Пример построения условного обозначения прибора для измерения, регистрации и автоматического регулирования перепада давления

Всем приборам и преобразователям, изображенным на функциональной схеме, присваиваются позиционные обозначения, состоящие из двух частей: арабских цифр - номера функциональной группы и строчных букв русского алфавита - номера прибора и ТСА в данной функциональной группе (например, 5а, 3б и т.п.).

Буквенные обозначения присваивают каждому элементу функциональной группы в порядке алфавита в зависимости от последовательности прохождения сигнала - от устройств получения информации к устройствам воздействия на управляемый процесс (например, приемное устройство - датчик, вторичный преобразователь, задатчик, регулятор, указатель положения, исполнительный механизм, регулирующий орган).

Допускается вместо букв русского алфавита использовать арабские цифры (например, 5-1, 3-2 и т.д.).

Примеры изображения отдельных измерительных каналов приведены на рисунках 3-11

Рис. 3. Индикация и регистрация температуры (TIR).

101-1 Термоэлектрический термометр тип ТХА, гр. ХА, пределы измерения от -50 С до 900 С, материал корпуса Ст0Х20Н14С2, марка ТХА-0515

101-2 Преобразователь термоЭДС в стандартный токовый сигнал 0…5 мА, гр. ХА, марка Ш-72

101-3 Миллиамперметр показывающий регистрирующий на 2 параметра, марка А-54

Рис. 4. Индикация, регистрация и регулирование температуры с помощью пневматического регулятора (TIRС, пневматика).

102-1 Термоэлектрический термометр тип ТХА, гр. ХА, пределы измерения от -50 С до 900 С, материал корпуса Ст0Х20Н14С2, марка ТХА-0515

102-2 Преобразователь термоЭДС в стандартный токовый сигнал 0…5 мА, гр. ХА, марка Ш-72

102-3 электропневмопреобразователь, входной сигнал 0…5 мА, выходной - стандартный пневматический 0,02…0,1 МПа, марка ЭПП-63 (или ЭПП-180)

102-4 пневматический вторичный прибор на 3 параметра со станцией управления, марка ПВ 10.1Э (с электроприводом диаграммной ленты)

102-5 Пневматический ПИ-регулятор ПР 3.31

Рис. 5. Индикация и регулирование температуры с помощью микропроцессорного регулятора (TIС, эл.).

103-1 Термоэлектрический термометр тип ТХА, гр. ХА, пределы измерения от -50 С до 900 С, материал корпуса Ст0Х20Н14С2, марка ТХА-0515

103-2 Трехканальный микропроцессорный регулятор типа «Протерм-100»

103-3 Регулирующий клапан для неагрессивных сред, корпус из чугуна, предельная температура Т = 300 С, давление Ру = 1,6 МПа, условный диаметр Dу = 100 мм, тип 25нч32нж

Рис. 6. Пример схемы контроля давления. Индикация давления (PI).

210-1 Манометр пружинный М-…

Рис. 7. Сигнализация давления (PA).

202-1 Пневматический первичный преобразователь давления, предел измерения 0… 1,6 МПа, выходной сигнал 0,02…0,1 МПа, марка МС-П-2 (манометр сильфонный с пневмовыходом)

202-2 Электроконтактный манометр с сигнальной лампой ЭКМ-1

202-3 Лампа сигнальная Л-1

Рис. 8. Индикация и регистрация давления (PIR, эл.).

204-1 Первичный преобразователь давления со стандартным токовым выходом 0…5 мА, марка МС-Э (или Сапфир-22ДИ и т.д.)

204-2 Миллиамперметр показывающий регистрирующий на 2 параметра, марка А-542

Рис. 9. Индикация и регулирование давления

205-1 Пневматический первичный преобразователь давления, предел измерения 0… 1,6 МПа, выходной сигнал 0,02…0,1 МПа, марка МС-П-2 (манометр сильфонный с пневмовыходом)

205-2 пневматический вторичный прибор на 3 параметра со станцией управления, марка ПВ 10.1Э (с электроприводом диаграммной ленты)

205-3 Пневматический ПИ-регулятор ПР 3.31

205-4 Регулирующий клапан для неагрессивных сред, корпус из чугуна, предельная температура Т = 300 С, давление Ру = 1,6 МПа, условный

205-5 Электроконтактный манометр с сигнальной лампой ЭКМ-1

205-6 Лампа сигнальная Л-1

Рис. 10. Схемы контроля расхода.

Для измерения расхода жидкости первичные преобразователи устанавливаются в сечении трубопровода, поэтому на схеме их обозначения изображаются встроенным в трубопровод.

При использовании сужающих устройств, например, диафрагм, перепад давлений на них замеряется дифманометрами, поэтому схемы автоматизации аналогичны схемам контроля давления.

301-1 Диафрагма марки ДК6-50-II-а/г-2 (диафрагма камерная, давление Ру = 6 атм, диаметр Dу = 50 мм)

301-2 Дифманометр с пневмовыходом 0,02…0,1 МПа, марка ДС-П1 (для пневматики) или Сапфир-22ДД (для электрической схемы)

302-1 Ротаметр РД-П (с пневмовыходом) или РД-Э (с электрическим выходом)

5. Указания к выполнению спецификации на приборы и средства автоматизации

Спецификация на все показанные на функциональной схеме приборы и преобразователи оформляется в виде таблицы. Пример спецификации для фрагмента функциональной схемы контроля температуры приведен ниже

Форма спецификации к ФСА.

поз.

Параметры среды,

измеряемые параметры

Наименование и техническая

характеристика

Марка

К-во

Приме-

чание

101-1

Температура в аппарате

Термоэлектрический термометр тип ТХА, гр. ХА, пределы измерения от -50 С до 900 С

марка ТХА-0515

1

На трубопроводе

101-2

Температура в аппарате

Преобразователь термоЭДС в стандартный токовый сигнал 0…5 мА, гр. ХА

марка Ш-72

1

по месту

101-3

Температура в аппарате

Миллиамперметр показывающий регистрирующий на 2 параметра

марка А-542

1

На щите

Графы таблицы заполняются следующим образом:

в графе 1 - буквенно-цифровое обозначение прибора в соответствии с его позиционным обозначением на схеме; сначала заносятся приборы с цифровым индексом 1, т.е. приборы первого комплекта (1-1, 1-2, 1-3,…), затем - второго комплекта (2-1, 2-2,…) и т.д.;

в графе 2 - полное наименование контролируемого или регулируемого параметра, например: «уровень щелока в выпарном аппарате», «давление в коллекторе ретортного газа»;

в графе 3 - рабочее значение параметра, например: «2,5 кПа», «10 Н/м2»; для параметров, изменяющихся в большом диапазоне, в частности при программном регулировании, приводятся минимальное и максимальное значение параметра;

в графе 4 - марка (шифр) прибора;

в графе 5 - количество однотипных приборов, установленных на объекте;

в графе 6 - место установки прибора («по месту» - непосредственно у объекта, или «на щите»).

6. Выбор и расчет оптимальных настроек автоматического регулятора

Для того чтобы выбрать тип регулятора и определить его настройки необходимо знать:

1. Статические и динамические характеристики объекта управления.

2. Требования к качеству процесса регулирования.

3. Показатели качества регулирования для серийных регуляторов.

4. Характер возмущений, действующих на процесс регулирования.

6.1 Определение динамических характеристик объекта регулирования

В настоящее время при расчете настроек регуляторов локальных систем широко используются простые динамические модели промышленных объектов управления. В частности, использование моделей инерционных звеньев первого или второго порядка с запаздыванием для расчета настроек регуляторов обеспечивает в большинстве случает качественную работу реальной системы управления.
В зависимости от вида переходной характеристики (кривой разгона) задаются чаще всего одним из двух видов передаточной функции объекта управления:
- в виде передаточной функции инерционного звена первого порядка

(1)

где - коэффициент усиления, постоянная времени и запаздывание, которые должны быть определены в окрестности номинального режима работы объекта.

Для объекта управления без самовыравнивания передаточная функция имеет вид

(2)

По кривой разгона оценивается характер объекта управления (с самовыравниванием или без) и определяются параметры соответствующей передаточной функции. Передаточную функцию вида (1) рекомендуется применять для объектов управления с явно выраженной доминирующей постоянной времени (одноемкостный объект). Перед началом обработки кривую разгона рекомендуется пронормировать (диапазон изменения нормированной кривой 0 - 1) и выделить из ее начального участка величину чистого временного запаздывания.

Методы первого порядка

Передаточная функция и разгонная характеристика объекта регулирования

Wм(s) = ,

h(t) = K (1 - ).1 (t). (3)

Определение параметров модели

Постоянная времени Т определяется как длина подкасательной, проведенной к кривой в точке t = (рис. 12, а) или в точке перегиба t = tw (рис. 12, б). В этом случае вводится дополнительное запаздывание д (рис. 12, б), а модель характеризуется эквивалентным запаздыванием.

э = + д.

Описанный метод является довольно грубым, его можно использовать для предварительной оценки свойств объекта.

Интерполяционный метод Ормана.

Пусть основное запаздывание уже выделено (рис. 10), начало координат смещено в точку t = . Поребуем, чтобы переходная кривая модели проходила через точки А и В.

Подставляя координаты (tA, yA) и (tB, yB) точек А и В и = д в формулу (27), для y(t) получим систему из двух уравнений:

yА = K (1 - ) х,

yВ = K (1 - ) х.

Решение системы (4) относительно д и Т имеет вид:

д = ,

Т = - .

Если принять yА = 0,33. yуст, а yВ = 0,7. yуст, то выражения (5) значительно упрощаются:

д = 0,5.(3.tА - tВ), Т = 1,25.(tВ - tА).

Для проверки точности модели ординаты экспериментальной кривой в точках t1 = 0,8.Т + д, t2 = 2.Т + д сравниваются с соответствующими ординатами переходной кривой модели y1 = 0,33. yуст, y2 = 0,865. yуст. Погрешность не должна превышать (0,02 + 0,03. yуст).

6.2 Выбор типа регулятора

Задача проектировщика состоит в выборе такого типа регулятора, который при минимальной стоимости и максимальной надежности обеспечивал бы заданное качество регулирования. Разработчиком могут быть выбраны релейные, непрерывные или дискретные (цифровые) типы регуляторов.

Выбор типа регулятора обычно начинается с простейших двухпозиционных регуляторов и может заканчиваться самонастраивающимися микропроцессорными регуляторами. Заметим, что по требованиям технологического регламента многие объекты не допускают применения релейного управляющего воздействия.

Рассмотрим показатели качества серийных регуляторов. В качестве серийных предполагаются аналоговые регуляторы, реализующие И, П, ПИ и ПИД - законы управления. 

Теоретически, с усложнением закона регулирования качество работы системы улучшается. Известно, что на динамику регулирования наибольшее влияние оказывает величина отношения запаздывания к постоянной времени объекта Эффективность компенсации ступенчатого возмущения регулятором достаточно точно может характеризоваться величиной динамического коэффициента регулирования , а быстродействие - величиной времени регулирования.

Минимально возможное время регулирования для различных типов регуляторов при оптимальной их настройке определяется таблицей 6.

Таблица 6.

Закон регулирования

П

ПИ

ПИД

6.5

12

7

где - время регулирования, - запаздывание в объекте.

Теоретически, в системе с запаздыванием, минимальное время регулирования

Руководствуясь таблицей можно утверждать, что наибольшее быстродействие обеспечивает П-закон управления. Однако, если коэффициент усиления П-регулятора мал (чаще всего это наблюдается в системах с запаздыванием), то такой регулятор не обеспечивает высокой точности регулирования, т. к. в этом случае велика величина статической ошибки. Если имеет величину равную 10 и более, то П-регулятор приемлем, а если то требуется введение в закон управления интегральной составляющей.

Наиболее распространенным на практике является ПИ-регулятор, который обладает следующими достоинствами:

1. Обеспечивает нулевую статическую ошибку регулирования;

2. Достаточно прост в настройке, т. к. настраиваются только два параметра, а именно коэффициент усиления и постоянная интегрирования . В таком регуляторе имеется возможность оптимизации , что обеспечивает управление с минимально возможной среднеквадратичной ошибкой регулирования;
3. Малая чувствительность к шумам в канале измерения (в отличии от ПИД-регулятора).

Для наиболее ответственных контуров можно рекомендовать использование ПИД-регулятора, обеспечивающего наиболее высокое быстродействие в системе. Обнако следует учитывать, что это условие выполняется только при его оптимальных настройках (настраиваются три параметра). С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество работы ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора. Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора, что увеличивает дисперсию ошибки регулирования и износ исполнительного механизма. Таким образом, ПИД-регулятор следует выбирать для систем регулирования, с относительно малым уровнем шумов и величиной запаздывания в объекте управления. Примерами таких систем является системы регулирования температуры.

При выборе типа регулятора рекомендуется ориентироваться на величину отношения запаздывания к постоянной времени в объекте . Если то можно выбрать релейный, непрерывный или цифровой регуляторы. Если , то должен быть выбран непрерывный или цифровой, ПИ- или ПИД-регулятор. Если , то выбирают специальный цифровой регулятор с упредителем, который компенсирует запаздывание в контуре управления. Однако этот же регулятор рекомендуется применять и при меньших отношениях .

6.3 Формульный метод определения настроек регулятора

Метод используется для быстрой, приближенной оценки значений параметров настройки регулятора для трех видов оптимальных типовых процессов регулирования.

Метод применим как для статических объектов с самовыравниванием (таблица 2.2), так и для объектов без самовыравнивания (таблица 2.3).

Таблица 5.

Регулятор

Типовой процесс регулирования

апериодический

с 20% перерегулированием

И

П

ПИ

ПИД

где T, , - постоянная времени, запаздывание и коэффициент усиления объекта.
В этих формулах предполагается, что настраивается регулятор с зависимыми настройками, передаточная функция которого имеет вид:

, (6)

где - коэффициент усиления регулятора, - время изодрома (постоянная интегрирования регулятора), - время предварения (постоянная дифференцирования).

Таблица 6.

Регулятор

Типовой процесс регулирования

апериодический

с 20% перерегулированием

П

-

ПИ

ПИД

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.