Рефераты. Анализ нагруженности плоского рычажного механизма

, (1.2.11);

где lО2B - длина плеча О2B по условию;

lО2S2 - длина плеча О2S2 по условию;

Факт принадлежности точки D звену ED дает векторное уравнение:

VD=VE+VDE (1.2.12);

В уравнении (1.2.9) VE - полностью определено, а о втором слагаемом известно лишь то, что линия действия этого вектора перпендикулярна DE.

Факт принадлежности точки D ползуну О3 дает векторное уравнение:

VD=VО3+VDО3 (1.2.13);

В уравнении (1.2.10) VO3 равно нулю, а о втором слагаемом известно лишь то, что линия действия этого вектора перпендикулярна ED . Точкой пересечения этих двух линий будет точка D.

VD= Pv d*µv , (1.2.14);

VD =41*0.01=0.41м/с

Далее находим скорости всех звеньев:

VBA=ba*µv , (1.2.15);

VBA=54*0,01 = 0.54 м/с ;

VAO1=ao1*µv , (1.2.16);

VAO1 = 100*0,01 = 1 м/с ;

VBO2=bo2*µv , (1.2.17);

VBO2=82*0,01 = 0.82м/с;

VDE=0. (1.2.18);

и скорости центров масс звеньев:

VS1=pvs1*µv, (1.2.19);

VS1=50*0.01=0.5м/с ;

VS2=pvs2*µv , (1.2.20);

VS2=83*0.01= 0.83 м/с;

VS3=pvs3*µv , (1.2.21);

VS3=52*0.01 = 0.52 м/с ;

VS4=0. (1.2.22);

Определяем угловые скорости звеньев механизма.

При помощи плана скоростей можно определить угловые скорости звеньев механизма.

Угловая скорость звена AB:

(1.2.23);

где VAB скорость движения точки B относительно точки A:

щAB= 13.5 рад/с;

Аналогично для остальных звеньев:

(1.2.24);

щBO2 = 27.3 рад/с;

(1.2.25);

щEF 0.

Скорости всех звеньев сводим в таблицу.

VA,

м/с

VB,м/с

VD,м/с

VE,м/с

VO2,м/с

VAO1, м/с

VO1,м/с

VAB,м/с

VBO,м/с

VED,

м/с

VS1,м/с

VS2,м/с

VS3,м/с

VS4,м/с

1.13

0.82

0.41

0.41

0

1

0

0.54

0.82

0

0.5

0.83

0.52

0

0

Таблица 1.2.1. -Скорости всех звеньев механизма

Угловые скорости звеньев сведем в таблицу.

щAB,рад/с

щBO2, рад/с

щDE, рад/с

13.5

27.3

0

1.2.2 ПОСТРОЕНИЕ ПЛАНА УСКОРЕНИЙ.

При построении ускорений точек и звеньев механизма тоже используем метод планов.

Построение начинаем с ведущего звена, для которого щ = const. В связи с этим

(1.2.23);

1/0.04=25 м/с2

вектор ускорения т.A направлен вдоль звена AO1 от точки A к центру вращения.

На поле чертежа произвольно выбираем полюс. От полюса вдоль звена AO1 проводим вектор скорости т.A произвольной длины. Вычисляем масштабный коэффициент

µa = (1.2.24);

µa = =0.2

Ускорение точки C находим из условия принадлежности этой точки двум звеньям AC и стойке, используя теорему о разложении ускорений.

По принадлежности Ск звену AС записываем:

(1.2.25);

В уравнении (1.2.25) известно полностью, направлено от точки C к точке A вдоль движения поршня и равно:

(1.2.26);

(0.02*68)2/0.08=23.12 м/с2

Далее определяем длину этого отрезка на плане:

(1.2.27);

nCA =23.12/0.9=26 мм.

По принадлежности точки C к звену DC составляем векторное уравнение:

(1.2.28);

Значение определяем аналогично

(1.2.29),

Далее определяем длину этого отрезка на плане:

(1.2.30);

nCD = 42.6/0.9 = 47 мм.

(1.2.31),

Далее определяем длину этого отрезка на плане:

(1.2.32);

nEF = 23.18/0.9=26мм.

Для нахождения ускорения точки E на плане, воспользуемся соотношением. Т.к. точка E лежит на звене AC, то справедливо соотношение:

(1.2.33);

где lAE- длина плеча AE по условию;

lAC - длина плеча AC по условию;

ae, ac - длина соответствующих отрезков на плане.

(1.2.34);

Теперь находим ускорения центров масс звеньев

(1.2.35);

(1.2.36);

(1.2.37);

(1.2.38);

Полученные данные сведем в таблицу.

Aa м/с2

, м/с2

, м/с2

aC, м/с2

, м/с2

, м/с2

, м/с2

aF, м/с2

153.8

23.12

18

90

42.6

85.5

108

23.18

18.9

36

, м/с2

, м/с2

aS3, м/с2

aS4, м/с2

aS5, м/с2

85.5

110.7

45

98.1

20

Таблица 1.2.3 - Ускорения точек и центров масс звеньев

Определение угловых ускорений звеньев механизма.

(1.2.39);

(1.2.40);

(1.2.41);

Угловые ускорения звеньев сведем в таблицу

,

,

,

,

0

225

1710

180

Таблица 1.2.4. - Угловые ускорения звеньев.

1.3 КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМА

Кинетостатический расчет, положенный в основу силового расчета механизма, базируется на принципе Д'Аламбера, который в общем случае движения звеньев механизмов, совершающих сложное плоское движение, позволяет решить задачу путем сведения сил инерции звеньев к главному вектору инерции Fi и к главному моменту сил Mi.

(1.3.1)

Знак “-” означает, что вектор силы инерции направлен в сторону противоположную ускорению центра масс.

Массы звеньев рассчитываются с помощью формулы:

(1.3.2)

где q = 0.1 кг/м,

l - длина звена.

m = P/g,

где P - вес звена (H),

g - ускорение свободного падения.

g = 9.8 м/с2.

Также существует главный момент инерции звена, который приложен к центру масс звена и направлен в противоположную угловому ускорению звена сторону

(1.3.3)

где -- момент инерции звена,

-- угловое ускорение звена.

1.3.1 РАСЧЕТ СИЛ И ГЛАВНЫХ МОМЕНТОВ ИНЕРЦИИ ЗВЕНЬЕВ МЕХАНИЗМА

.

mAB = 2,6 кг.

mCA 0,008кг.

mEF =0.0105кг.

mDC=0.005кг

,

Силы и главные моменты инерции приведены в таблице

222.3

0.89

0.48

0.5

0

0.89

0.18 0.171

Таблица 1.3.1. Рассчитанные значения сил и моментов инерции звеньев механизма

1.3.2 ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В КИНЕМАТИЧЕСКИХ ПАРАХ

Силовой анализ механизма начинаем с группы Ассура 3-5, наиболее удалённой от ведущего звена. Связи в шарнирах заменяются реакциями и .

В шарнире F реакция неизвестна по модулю и направлена по горизонтали. Обозначим в точке силу инерции. Обозначим также вес звена FE и вес ползуна Р.

Сумма моментов относительно точки F равна нулю:

(1.3.4)

где ,-- плечи соответствующих силы и веса

Находим :

(1.3.5)

Составляем векторное уравнение:

(1.3.6)

С учётом этого уравнения строим замкнутый силовой многоугольник. На чертеже выбираем полюс . От него проводим вектор произвольной длины по направлению силы .Вычисляем масштабный коэффициент:

(1.3.7)

Далее к вектору достраиваем другие составляющие уравнения (1.3.6), рассчитывая длину векторов при помощи масштабного коэффициента.

Определяют реакции в кинематической паре 2-4. Реакции в шарнирах A и D нужно разложить на составляющие по направлению осей и , и перпендикулярные им: и . Тангенциальные составляющие можно найти, если записать уравнение суммы моментов каждого звена относительно точки С.

Условия равновесия звеньев 2 и 3 соответственно:

(1.3.9)

(1.3.10)

Рассмотрим уравнение равновесия группы в целом. Запишем векторное уравнение равновесия этой группы:

(1.3.11)

В этом уравнении все составляющие, кроме , известны по модулю и по направлению. Нужно построить замкнутый силовой многоугольник, откладывая последовательно векторы сил.

(1.3.12)

Рассмотрим уравнение равновесия группы в целом. Запишем векторное уравнение равновесия этой группы:

(1.3.13)

В этом уравнении все составляющие, кроме , известны по модулю и по направлению. Нужно построить замкнутый силовой многоугольник, откладывая последовательно векторы сил.

Теперь определим уравновешивающую силу и уравновешивающий момент, действующий на кривошип AB.

На кривошип AB действует шатун силой . Считается, что сила приложена перпендикулярно звену AB. В этом случае уравнение моментов всех сил, приложенных к кривошипу относительно точки B, имеет вид:

(1.3.12)

(1.3.13)

(1.3.14)

Найденные при силовом анализе механизма величины представлены в таблице 1.4.

57

48

65

0.22

0.6

0.8

0.79

0.7

0.9

73

1.9

Таблица 1.4. Силовой анализ механизма

2. ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ

В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими внешними усилиями являются силы инерции Fi, моменты инерции M и реакции в кинематических парах R. Под действием внешних сил звенья плоского механизма испытывают деформации. В данном механизме преобладают совместные деформации изгиба и растяжения.

Анализ нагруженной группы Асура 3-5 показывает, что звено 3 во время работы механизма испытывает совместное действие изгиба и растяжения. Для оценки прочности механизма необходимо при помощи метода сечений определить величину внутренних усилий, действующих в сечениях. Значения всех сил сведем в таблицу.

Таблица 2.1

0.16

0.208

0.832

0.656

0.32

0.352

2.1 Построение эпюр En, Nz, H*M

Нагруженность звена позволяет выделить два участка: ES3 и S3F. Использование метода сечений для нормальной силы NZ дает следующие уравнения:

I участок

(2.1)

II участок

(2.2)

По этим данным строим эпюру NZ.

Для поперечной силы QY на соответствующих участках записываются такие уравнения:

I участок

(2.3)

II участок

(2.4)

Согласно с полученными значениями строим эпюру QY.

Аналитические уравнения записываем также для изгибающего момента на участках I и II:

I участок

(2.5)

II участок

(2.6)

(2.7)

Эпюру МХ строим по полученным значениям моментов.

Из эпюр МХ и NZ видно, что опасное сечение звена проходит через точку S3.

Mmax =0.24Нмм

NZmax = 0.656 H

2.2 Подбор сечений

2.2.1 Подбор прямоугольного сечения

Пусть для прямоугольного сечения h=2b. Тогда:

F=h . b=2b2 (2.8)

(2.9)

b=U+V (2.10)

где - U и V вычисляются по формулам:

(2.11)

(2.12)

V=0,25*10-2 м

U=0 м

b=0,25*10-2м

h=2b=0,510-2 м

2.2.2 Подбор круглого сечения

Для круглого сечения используется отношение:

(2.13)

(2.14)

Подстановки и преобразования дают также кубическое уравнение:

(2.15)

Корень этого уравнения равен:

D=U1+V1 (2.16)

где - U1 и V1 вычисляются по формулам:

(2.17)

(2.18)

D=0,510-2 м=5 мм

2.2.3 Подбор сечения в виде двутавра

Для сечения в виде двутавра параметры находим подбором, подставляя в выражение (2.16) значение WX=0,0017см3. Принимая [у] = 140 МПа, выбираем двутавр с параметрами Н = 10 мм, В = 7 мм, S = 0,45 мм, ГОСТ 13621-79, изготовленный из конструкционной стали марки (ГОСТ 8239-56).

Графическая часть II раздела курсовой работы представлена на листе формата А2.

ВЫВОДЫ

В ходе выполнения курсовой работы были изучены методы анализа и расчёта плоских рычажных механизмов. Структурный анализ механизма показал, что данный плоский рычажный механизм является механизмом второго класса т. е. для его работы необходимо только одно ведущее звено. В результате динамического анализа были определены силы, реакции, моменты, скорости и ускорения, действующие на каждое из звеньев механизма.

Результатом расчета прочностных характеристик плоского рычажного механизма явился подбор параметров опасного сечения. Параметры прямоугольного сечения - b=2,5 мм и h= 5 мм, для круглого - D=5 мм, кроме того подобран профиль Ст3 430001?НД. Наиболее рациональным является прямоугольная форма сечения.

ПЕРЕЧЕНЬ ССЫЛОК

1 Степин П. А. Сопротивление материалов. Изд. 5-е, перераб. и доп. Учебник для студентов машиностроительных вузов. М., «Высшая школа», 2003.

2 Методические указания к курсовой работе по курсу «Теоретическая механика» для студентов специальностей 7.091807 и 7.091002 / Автор Евстратов Н. Д. - Харьков: ХТУРЭ, 1999. - 40 с.

3. Артоболевский И. И. Теория механизмов и машин. - М.: Наука, 2002.-640с.

4 Тарг С. М. Краткий курс теоретической механики. - М.: Высш. Шк. 1999.-416с.

5 Конспект лекций .

6 Анурьев В.И. Справочник конструктора-приборостроителя. - М.: «Приборостроение» 1997 688 с.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.