Рефераты. Ампер - заснавальнік сучаснай электрадынамікі

Ампер - заснавальнік сучаснай электрадынамікі

Міністэрства адукацыі РБ

Брэсцкі Дзяржаўны універсітэт імя А.С. Пушкіна

Рэферат

А. Ампер - заснавальнік сучаснай электрадынамікі

Падрыхтаваў

студэнт 2 курса

групы ФІ-21

Пашкевіч Анатоль

Брэст 2009

Змест:

Пачатак навуковай дзейнасці навукоўца

Уяўленні пра сувязь паміж электрычнасцю і магнетызмам да Ампера

Электрадынаміка Ампера

Іншыя працы Ампера

Спіс літаратуры

Пачатак навуковай дзейнасці навукоўца

Андрэ-Мары Ампер нарадзіўся 20 студзеня 1775 года ў Ліёне ў сям'і

Адукаванага камерсанта. Бацька яго неўзабаве перасяліўся з сям'ёй у маёнтак Палем'е, размешчанае ў наваколлях Ліёна, і асабіста кіраваў выхаваннем сына. Ужо к 14 гадам Ампер прачытаў усе 20 тамоў знакамітай “Энцыклапедыі” Дзідро і д'Аламбера. Выяўляючы з дзяцінства вялікую схільнасць да матэматычных навук, Ампер к 18 гадам у дасканаласці вывучыў асноўныя працы Эйлера, Бярнулі і Лагранжа. Да таго часу ён добра валодаў латынню, грэчаскай і італьянскай мовамі. Іншымі словамі, Ампер атрымаў глыбокую і энцыклапедычную адукацыю.

У 1793 годзе ў Ліёне ўспыхнуў контррэвалюцыйны мяцеж. Бацька Ампера - жырандыст, які выконваў абавязкі суддзі пры мяцежніках, пасля прыгнечання мецяжу быў пакараны як саўдзельнік арыстакратаў. Маёмасць яго была канфіскавана. Тады юны Ампер пачаў сваю працоўную дзейнасць з прыватных урокаў.

У 1801 годзе ён заняў пасаду выкладчыка фізікі і хіміі цэнтральнай школы ў горадзе Бурзе. Тут ён напісаў першую навуковую працу, прысвечаную тэорыі верагоднасці “Досвед матэматычнай тэорыі гульні”. Гэта праца прыцягнула ўвагу д'Аламбера і Лапласа. І Ампер стаў выкладаць матэматыку і астраномію ў Ліёнскім ліцэі. У 1805 годзе Ампер быў прызначаны рэпетытарам па матэматыцы ў знакамітай Політэхнічнай школе ў Парыжы і з 1809 гаду заведаў кафедрай вышэйшай матэматыкі і механікі. У гэты перыяд Ампер публікуе шэраг матэматычных прац па тэорыі радо ў. У 1813 годзе яго абіраюць членам Інстытута (Парыжскай Акадэміі навук) на месца памёршага Лагранжа. Неўзабаве пасля абрання Ампер паклаў у Акадэмію сваё даследаванне пра прыламленне святла. Да гэтага ж часу адносіцца яго знакаміты “Ліст да г. Бертолле”, у якім Ампер сфармуляваў адкрыты ім незалежна ад Авагадра хімічны закон, які цяпер называецца законам Авагадра-Ампера.

У 1816 годзе Ампер апублікаваў сваю класіфікацыю хімічных элементаў - першую ў гісторыі хіміі сур'ёзную спробу размясціць хімічныя элементы па іх падабенстве паміж сабой.

Адкрыццё Эрстэдам у 1820 годзе дзеяння электрычнага току на магнітную стрэлку прыцягвае ўвага Ампера да з'яў электрамагнетызму.

З 1820 па 1826 год Ампер апублікаваў шэраг тэарэтычных і эксперыментальных прац па электрадынаміцы і амаль штотыдзень выступаў з дакладамі да Акадэміі навук. У 1822 годзе ён выпусціў “Зборнік назіранняў па электрамагнетызме”, у 1823 году - “Канспект тэорыі электрадынамічных з'яў” і, нарэшце, у 1826 годзе - знакамітую “Тэорыю электрадынамічных з'яў, выведзеных выключна з досведу”. Ампер атрымлівае сусветную вядомасць як выдатны фізік.

Уяўленні пра сувязь паміж электрычнасцю і магнетызмам да Ампера

Ампер ўпершыню прапанаваў тэрмін “электрадынаміка” і адмовіўся ад паняцця “электрамагнетызм”, якое тады ўжо фігуравала ў тэрміналогіі фізікі. Ампер адкінуў паняцце “электрамагнетызм”, відаць таму, што лічыў, што з'явы, якія адбываюцца пры ўзаемадзеянні токаў, не можа растлумачыць гіпотэза таго часу пра магнітную вадкасць. Ён лічыў, што пакуль гаворка ідзе толькі пра ўзаемадзеянні паміж токам і магнітам, тэрмін “электрамагнітныя з'явы” быў цалкам дарэчы, бо апісваў адначасовую праяву электрычных і магнітных эфектаў, адкрытых Эрстэдам.

Але калі было ўстаноўленана ўзаемадзеянне паміж токамі, гонар адкрыцця якога належыць Амперу, тое стала ясна, што тут удзельнічаюць не магніты, а два ці некалькі электрычных токаў.

“Паколькі з'явы,- пісаў ён,- пра якія тут ідзе гаворка, могуць быць выкліканы толькі электрычнасцю, што рухаецца, я палічыў патрэбным абазначыць іх тэрмінам электрадынамічныя з'явы”.

Гісторыя электрычнасці і магнетызму багатая назіраннямі і фактамі, рознымі поглядамі і ўяўленнямі пра падабенства і адрозненне электрычнасці і магнетызму.

Упершыню ўласцівасці магнітнага жалязняку і бурштыну апісаў Фалес Мілецкі у шостым стагодзі да н.э., які сабраў значны матэрыял па гэтай тэме. Яго доследы былі чыста абстрактнымі, і нічым не пацверджанымі. Фалес даў малапераканальнае тлумачэнне ўласцівасцям магніта ці нацёртага бурштыну, прыпісваючы ім “адушаўлёнасць”. Праз стагоддзе пасля яго Эмпедокл тлумачыў прыцягненне жалеза магнітам “зцячэннямі”. Пазней падобнае ж тлумачэнне ў больш вызначанай форме было прадстаўлена ў кнізе Лукрэцыя “Пра прыроду рэчаў”. Выказванні пра магнітныя з'явы меліся і ў працах Платона, дзе ён апісваў іх у паэтычнай форме.

Уяўленні пра істоту магнітных дзеянняў былі ў навукоўцаў бліжэйшага да нас часу - Дэкарта, Гюйгенса і Эйлера, прычым гэтыя ўяўленні ў некаторых адносінах не занадта адрозніваліся ад уяўленняў старажытных філосафаў.

З часоў антычнасці да эпохі Рэнесансу магнітныя з'явы выкарыстоўваліся або як сродак забаўкі, або як карысная прылада для ўдасканалення навігацыі. Праўда, у Кітаі бусоль ужывалася для навігацыі яшчэ да нашай эры. У Еўропе яна стала вядомая толькі ў 13 стогодзі, хоць упершыню згадваецца ў працах сярэднявечных аўтараў.

Першым эксперыментатарам, які заняўся магнітамі, быў Пётр Перэгрын з Марыкура (13 стагоддзе). Ён дасведчаным шляхам усталяваў існаванне магнітных палюсоў, прыцягненне рознаіменных палюсоў і адштурхванне аднайменных.

Разразаючы магніт, ён выявіў немагчымасць ізаляваць адзін полюс ад іншага. Ён вывастрыў сфероід з магнітнага жалязняку і спрабаваў эксперыментальна паказаць аналогію ў магнітным стаўленні паміж гэтым сфероідам і зямлёй. Гэты досвед пасля яшчэ больш відавочна паказаў Гільберт у 1600 годзе.

Затым у вобласці вывучэння магнітных з'яў наступіла амаль трохвяковае зацішша.

Старажытныя (напрыклад, Тэафраст) у 4 стагодзі да н.э. выявілі, што, акрамя бурштыну, і некаторыя іншыя рэчывы (гагат, анікс) здольныя ў выніку трэння набываць уласцівасці, пасля названыя электрычнымі. Аднак на працягу доўгага часу ніхто не супаставіў магнітныя і электрычныя дзеянні і не выказаў думкі пра іх агульнасць.

Адным з першых сярэднявечных навукоўцаў (а магчыма, і самым першым), хто вёў спадарожнае назіранне фактаў, якія могуць навесці на ўяўленні пра ўзаемадзеянні, падабенства ці адрозненне электрычных і магнітных з'яў, быў Кардан, які ўнёс у гэта пытанне некаторую ўпарадкаванасць. У сваёй працы “Пра дакладнасць” 1551 гада ён эксперыментальна паказвае безумоўнае адрозненне паміж электрычнымі і магнітнымі прыцягненнямі. Калі бурштын здольны прыцягваць усякія лёгкія целы, то магніт прыцягвае толькі жалеза. Наяўнасць перашкоды (напрыклад, экрана) паміж целамі спыняе дзеянне электрычнага прыцягнення лёгкіх прадметаў, але не перашкаджае магнітнаму прыцягненню. Бурштын не прыцягваецца тымі кавалачкамі, якія ён сам прыцягвае, а жалеза здольна прыцягваць сам магніт. Далей: магнітнае прыцягненне накіравана пераважна да палюсоў, лёгкія ж целы прыцягваюцца ўсёй паверхняй нацёртага бурштыну. Для стварэння электрычных прыцягненняў неабходны, па меркаванні Кардана, трэнне і цеплыня, у той час як прыродны магніт выяўляе сілу прыцягнення без якой-небудзь яго папярэдняй падрыхтоўкі.

Найбольш яркі эксперыментальны метад менавіта ў вобласці магнітных і электрычных з'яў асвоіў Уільям Гільберт, які аднавіў прыёмы Пятра

Перэгрына, што развіў іх. Яго праца, якая выйшла ў 1600 годзе пра магніты ўключала шэсць кніг і склала цэлую эпоху ў навуковай літаратуры. Яна стала крыніцай, якой карыстаўся Галілей і Кеплер, калі тлумачылі эксцэнтрычнасць арбіт прыцягненнямі і адштурхваннямі паміж сонечнымі і планетарнымі магнітамі. Гільберт выкладае меркаванні пра падабенствы і адрозненні магнітных і электрычных з'яў і прыходзіць да высновы, што электрычныя з'явы адрозніваюцца ад з'яў магнітных.

У 1629 году Никала Кабео апублікаваў працу пра магнітную філасофію, у якой упершыню указаў на існаванне электрычных адштурхванняў. Кабео, як і Гільберт, выказваў думку пра “сферу дзеяння” магніта, якая абмяжоўваецца некаторай прасторай вакол цела. Так яшчэ невыразна з'яўлялася ўяўленне пра магнітнае поле. Гэта думка з большай пэўнасцю была выказана Кеплерам, які прыйшоў да паняцця “лініі дзеяння”, якія складаюць у сваёй сукупнасці “сферу дзеяння” вакол кожнага з палюсоў.

Тады з'явы электрычнасці і магнетызму тлумачыліся дзеяннем нябачнай найтонкай вадкасці - эфіру. У 1644 году Дэкарт апублікаваў сваю вядомую працу “Прынцыпы філасофіі”, дзе было нададзена месца пытанням магнетызму і электрычнасці. Па Дэкарце, вакол кожнага магніта існуе найтонкае рэчыва, якое складаецца з нябачных віхраў.

Меркаванне Гільберта пра карэннае адрозненне паміж электрычнасцю і магнетызмам трывала ўтрымлівалася ў навуцы больш чым паўтара стагоддзя.

Эпинус, які займаўся даследаваннем электрычнасці і магнетызму, прымусіў навукоўцаў звярнуцца да пытання пра падабенства гэтых дзвюх з'яў. Ён таксама паклаў пачатак новаму этапу ў гісторыі тэарэтычных даследаванняў у дадзенай вобласці, - ён звярнуўся да разліковых метадаў даследавання.

На новым этапе развіцця тэорый электрычнасці і магнетызму, адкрытым працамі Эпинуса, асоба важнымі былі працы Кевендыша і Кулона. Кевендыш у сваёй працы 1771 гада разгледзеў розныя законы электрычных дзеянняў з пункту гледжання зваротнай іх прапарцыйнасці адлегласці. Ён уводзіць паняцце пра ступень наэлектрызаванасці правадніка (гэта значыць ёмістасці) і пра ўраўнаванне гэтай ступені ў двух наэлектрызаваных цел, злучаных паміж сабой правадніком. Гэта першае колькаснае ўдакладненне пра роўнасць патэнцыялаў.

У 1785 году Кулон правёў свае знакамітыя даследаванні колькасных характарыстык узаемадзеяння паміж магнітнымі палюсамі, з аднаго боку, і паміж электрычнымі зарадамі - з іншага. Акрамя таго, ён увёў паняцце пра магнітны момант і прыпісаў гэтыя моманты матэрыяльным часціцам.

Вось прыкладна сукупнасць тых уяўленняў, якія маглі стварыцца ў Ампера да 1800 гада, калі ўпершыню быў атрыманы электрычны ток, і пачаліся даследаванні з'яў гальванізму.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.